Exponentiell Gewichtet Gleitend Durchschnittlich Zeitkonstante
Angesichts einer Zeitreihe xi möchte ich einen gewichteten gleitenden Durchschnitt mit einem Mittelungsfenster von N Punkten berechnen, wobei die Gewichtungen für neuere Werte über ältere Werte sprechen. Bei der Wahl der Gewichte verwende ich die bekannte Tatsache, daß eine geometrische Reihe gegen 1 konvergiert, d. H. Sum (frac) k, sofern unendlich viele Begriffe genommen werden. Um eine diskrete Zahl von Gewichtungen zu erhalten, die zu einer Einheit summieren, nehme ich einfach die ersten N-Terme der geometrischen Reihe (frac) k und normalisiere dann ihre Summe. Bei N4 ergeben sich zum Beispiel die nicht normierten Gewichte, die nach Normalisierung durch ihre Summe ergibt. Der gleitende Mittelwert ist dann einfach die Summe aus dem Produkt der letzten 4 Werte gegen diese normierten Gewichte. Diese Methode verallgemeinert sich in der offensichtlichen Weise zu bewegten Fenstern der Länge N und scheint auch rechnerisch einfach. Gibt es einen Grund, diese einfache Methode nicht zu verwenden, um einen gewichteten gleitenden Durchschnitt mit exponentiellen Gewichten zu berechnen, frage ich, weil der Wikipedia-Eintrag für EWMA komplizierter erscheint. Was mich fragt, ob die Lehrbuch-Definition von EWMA hat vielleicht einige statistische Eigenschaften, die die obige einfache Definition nicht oder sind sie in der Tat gleichwertig sind, beginnen Sie mit 1), dass es keine ungewöhnlichen Werte Und keine Pegelverschiebungen und keine Zeittrends und keine saisonalen Dummies 2), dass das optimale gewichtete Mittel Gewichte aufweist, die auf eine gleichmäßige Kurve fallen, die durch einen Koeffizienten 3 beschreibbar ist), dass die Fehlerabweichung konstant ist, dass es keine bekannten Ursachenreihen gibt Annahmen. Ndash IrishStat Okt 1 14 am 21:18 Ravi: In dem gegebenen Beispiel ist die Summe der ersten vier Ausdrücke 0,9375 0,06250,1250.250,5. Die ersten vier Ausdrücke haben also 93,8 des Gesamtgewichts (6,2 ist im abgeschnittenen Schwanz). Verwenden Sie diese, um normierte Gewichte zu erhalten, die zu einer Einheit durch Reskalierung (dividieren) um 0,9375 zusammenkommen. Dies ergibt 0,06667, 0,1333, 0,267, 0,5333. Ndash Assad Ebrahim Ich habe festgestellt, dass die Berechnung der exponentiell gewichteten laufenden Durchschnitte mit overline leftarrow overline alpha (x - overline), alphalt1 ist eine einfache einzeilige Methode, die leicht, wenn auch nur annähernd interpretierbar in Bezug auf Eine effektive Anzahl von Proben Nalpha (vergleichen Sie diese Form an die Form für die Berechnung der laufenden Mittelwert), erfordert nur das aktuelle Datum (und den aktuellen Mittelwert), und ist numerisch stabil. Technisch integriert dieser Ansatz alle Geschichte in den Durchschnitt. Die beiden Hauptvorteile bei der Verwendung des Vollfensters (im Gegensatz zum verkürzten, in der Frage diskutierten) liegen darin, dass es in einigen Fällen die analytische Charakterisierung der Filterung erleichtern kann, und es reduziert die Fluktuationen, die bei sehr großen (oder kleinen) Daten induziert werden Wert ist Teil des Datensatzes. Beispielsweise betrachten Sie das Filterergebnis, wenn die Daten alle Null sind, außer für ein Datum, dessen Wert 106 ist. Antworte 29 Nov 12 bei 0: 33Exponentielle Glättung von Gewichten nach Beobachtungen mit exponentiell abnehmenden Gewichten zur Prognose zukünftiger Werte Dieses Glättungsschema beginnt mit dem Setzen (S2) Bis (y1), wobei (Si) für eine geglättete Beobachtung oder EWMA steht und (y) für die ursprüngliche Beobachtung steht. Die Indizes beziehen sich auf die Zeitperioden (1,, 2,, ldots,, n). Für die dritte Periode (S3 alpha y2 (1-alpha) S2) und so weiter. Es gibt keine (S1) die geglättete Reihe beginnt mit der geglätteten Version der zweiten Beobachtung. Für einen beliebigen Zeitraum (t) wird der geglättete Wert (St) durch Berechnen von St alpha y (1-alpha) S ,,,,,,, 0 gefunden. Expandierte Gleichung für (S5) Zum Beispiel die erweiterte Gleichung für die geglättete Wert (S5) ist: S5 alpha links (1-alpha) 0 y (1-alpha) 1 y (1-alpha) 2 y rechts (1-alpha) 3 S2. Veranschaulicht Exponentialverhalten Dies veranschaulicht das exponentielle Verhalten. Die Gewichte (alpha (1-alpha) t) nehmen geometrisch ab und ihre Summe ist wie unten gezeigt einheitlich, wobei eine Eigenschaft der geometrischen Reihe verwendet wird: alpha sum (1-alpha) i alpha left frac right 1 - (1-alpha) T. Aus der letzten Formel können wir sehen, daß der Summationsterm zeigt, daß der Beitrag zum geglätteten Wert (St) in jedem aufeinanderfolgenden Zeitraum kleiner wird. Beispiel für (alpha 0,3) Let (alpha 0,3). Man beachte, dass die Gewichte (alpha (1-alpha) t) mit der Zeit exponentiell (geometrisch) abnehmen. Die Summe der quadratischen Fehler (SSE) 208.94. Der Mittelwert der quadratischen Fehler (MSE) ist die SSE 11 19.0. Berechnen Sie für verschiedene Werte von (alpha) Das MSE wurde erneut für (alpha 0,5) berechnet und erwies sich als 16,29, so dass in diesem Fall ein (alpha) von 0,5 bevorzugt wäre. Können wir es besser machen Wir könnten die bewährte Trial-and-Error-Methode anwenden. Dies ist ein iteratives Verfahren, das mit einem Bereich von (alpha) zwischen 0,1 und 0,9 beginnt. Wir bestimmen die beste Ausgangswahl für (alpha) und suchen dann zwischen (alpha - Delta) und (alpha Delta). Wir könnten dies vielleicht noch einmal wiederholen, um die besten (alpha) bis 3 Dezimalstellen zu finden. Nichtlineare Optimierer können verwendet werden. Aber es gibt bessere Suchmethoden, wie das Marquardt-Verfahren. Dies ist ein nichtlinearer Optimierer, der die Summe der Quadrate der Residuen minimiert. Im Allgemeinen sollten die meisten gut entworfenen statistischen Softwareprogramme in der Lage sein, den Wert von (alpha) zu finden, der die MSE minimiert. Ein Beispieldiagramm, das geglättete Daten für 2 Werte von (alpha)
Comments
Post a Comment